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Solidity of viscous liquids. II. Anisotropic flow events
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~Received 8 January 1999!

Recent findings on displacements in the surroundings of isotropic flow events in viscous liquids@Phys. Rev.
E 59, 2458~1999!# are generalized to the anisotropic case. Also, it is shown that a flow event is characterized
by a dimensionless number reflecting the degree of anisotropy.@S1063-651X~99!00406-7#

PACS number~s!: 64.70.Pf, 62.10.1s, 62.90.1k
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In a previous paper, henceforth referred to as~I! @1#, it
was argued that viscous liquids close to the glass trans
@2–11#—where viscosity is roughly 1015 times larger than
that of, e.g., room temperature water—are more like so
than like the less viscous liquids studied in standard liq
theory @12,13#. The idea@5# that viscous liquids are qualita
tively different from less-viscous liquids is, of course, n
new. It is a rather obvious idea, given the following fa
While ‘‘ordinary’’ less-viscous liquids have relaxation time
in the picosecond range, i.e., comparable to typical pho
times, viscous liquids have much longer average relaxa
times ~roughly given by Maxwell’s expressiont5h/G` ,
where h is the viscosity andG` the instantaneous shea
modulus!. This decoupling of relaxation times from phono
times is also reflected in a decoupling of diffusion consta
@14#: For less-viscous liquids the molecular diffusion co
stantD is of the same order of magnitude as the transve
momentum diffusion constant, the dynamic viscosity of t
Navier-Stokes equationn}h. However, with increasing vis
cosity, D decreases~roughly ash21 from a simple Stokes-
Einstein type argument! while n increases. At the glass tran
sition n is about 1030 times larger thanD.

The average relaxation time increases dramatically u
cooling. Goldstein argued@15# that whent becomes longer
than about 1 ns there is a gradual onset of typical visco
liquid behavior. As noted first by Angell@6#, this is roughly
at the temperature below which ideal mode-coupling the
@16# breaks down. It is generally believed that in visco
liquids ‘‘real’’ molecular motion beyond pure vibration take
place on the time scale defined byt, although inhomogene
ities are likely to give rise to faster relaxations in some pa
of the liquid @17–22#. ‘‘Real’’ motion is rare because it in-
volves overcoming energy barriers large compared tokBT
@2,15#. The transition itself is a jump between two potent
energy minima, a process that lasts just a few picoseco
One thus arrives at the following picture: Most molecu
motion in a viscous liquid is purely vibrational; real motio
is rare and takes place via sudden molecular rearrangem
It is interesting to note that this old picture@2,23# has never
really been challenged~while the nature of the energy barrie
to be overcome in the transition is still being debated@24#!.
In fact, extensive computer simulations have now defi
tively confirmed the picture@25#.

The sudden molecular rearrangements@2,5,15,26–31# are
referred to below as ‘‘flow events.’’ It is generally believe
that flow events are localized in the sense that only a
molecules experience large displacements, while all o
PRE 591063-651X/99/59~6!/7243~3!/$15.00
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molecules are only slightly displaced; the large-displacem
molecules involved in a flow event thus define a ‘‘region’’
the liquid. Because flow events are rare and molecules m
of the time just vibrate, a viscous liquid looks much like
solid. In ~I! the small displacements in the surroundings o
flow event were calculated from solid elasticity theory, a
suming spherical symmetry. It was shown that the displa
mentu in the surroundings of a region is given by~wherer
is the distance to the region!

u}
1

r 2 . ~1!

The displacement is purely radial. However, assum
spherical symmetry of flow events is not realistic; when m
ecules move from one potential energy minimum to anot
there must be some violation of spherical symmetry, eve
the molecules have only radially dependent interactions. O
is thus led to ask whether Eq.~1! and its consequences re
main valid in the anisotropic case.

As in ~I! the starting point is the solidity of viscous liquid
as reflected in the slow ‘‘real’’ motion of the molecules. Th
fact implies that the average force on any molecule is
tremely close to zero. In a continuum description, the av
age force per unit volume is the divergence of the str
tensors i j , wherei , j 51,2,3 are spatial indices. The cond
tion of average zero force—elastic equilibrium—is~where
] i5]/]xi and one sums over repeated indices!

] is i j 50. ~2!

Linear elasticity theory@32# may be applied to the region
surroundings, because the molecular displacements in t
surroundings are small and because there is elastic equ
rium in the liquid before as well as after a flow event. Mo
likely, there are large ‘‘frozen-in’’ stresses in the liquid, b
the changein the stress tensor induced by one flow even
small, except in the region itself. Now we define a sph
centered at the region, large enough that outside the sp
the flow event induced displacements and stress te
changes are so small that linear elasticity theory applies
the changes. Image all molecules within the sphere be
removed, and the forces from these molecules acting on
molecules outside the sphere being replaced by exte
forces applied to the surface of the sphere. This is done
fore as well as after the flow event. The flow event induc
displacements of the surroundings can then be calcul
from the change of these external forces. To do this we fi
7243 ©1999 The American Physical Society
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7244 PRE 59BRIEF REPORTS
consider the distance dependence of displacements in
elastic solid when an external force is applied to just o
point. There is then a continuous flow of momentum into
solid at that point. The stress tensor is the momentum
rent, and the mechanical equilibrium condition@Eq. ~2!# is
the zero-divergence equation reflecting momentum conse
tion. By considering Gauss surfaces at various distan
from the point, one concludes from Eq.~2! that the stress
tensor decays asr 22, where r is the distance to the point
Since the stress tensor is formed from first order spatial
rivatives of the displacementu, we conclude thatu}r 21

@33#. This result also applies when several external forces
applied locally to the solid, as long as these forces do
sum to zero. In our case, however, the external forces rep
ing the forces from the molecules within the sphere do s
to zero: The forces from the molecules outside the spher
those inside must sum to zero—otherwise the latter m
ecules would start to move. By Newton’s third law, the su
of the forces acting from the molecules inside the sphere
those outside—the forces that are replaced by exte
forces—must therefore also sum to zero. When the exte
forces sum to zero, the stress tensor does not decay asr 22

but asr 23 ~the mathematics behind this fact is the same
that implying that the electric field from a charge distributi
with zero total charge decays asr 23 and not asr 22). Con-
sequently, since the stress tensor is given as first order
rivatives of the displacement vector, we arrive at Eq.~1!,
which is now to be understood as valid for each of the th
components of the displacement vector. In particular,
note that the predictions of~I! for the displacement and ro
tation angle distributions in the surroundings of a flow ev
@P(u)}u25/2 and P(f)}f22# are also valid in the aniso
tropic case. The first prediction has recently been confirm
in computer simulations of a binary Lennard-Jones mixt
@34#, and the second is consistent with the small rotat
angle distribution tentatively inferred from NMR exper
ments on glycerol by Bo¨hmer and Hinze:P(f)}1/sin2(f)
@35#.

We now show that it is possible to characterize flo
events according to their anisotropy. The elastic equilibri
in the surroundings of a flow event before as well as after
flow event implies that the stress tensor changeDs i j has
zero divergence@i.e., obeys Eq.~2!#. Sinceu and Ds i j are
linked by linear elasticity theory, one has@32#

“

2~“•u!50. ~3!

This equation can be solved asymptotically forr→`: Equa-
tion ~1! implies“•u}r 23. Any real solution to the Laplace
equation decaying asr 23 can be written @36# as
aP2(u,f)/r 3, wherea>0 is a constant andP2 is a normal-
ized linear combination of second order spherical harmon
P25Sm522

m52 cmY2m , where cm* 5c2m and Sm522
m52 ucmu251.
ds
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This expression applies far away from the flow eve
r @r 0 , wherer 0 is the region size. On the other hand, t
expression does not apply beyond the ‘‘solidity length’’l
discussed in~I!, where essentially no flow event induce
displacements are expected. Since“•u is dimensionless,a
has dimension~length!3. Writing a5a/r0, wherer0 is the
average~number! density anda is dimensionless, we have

“•u5a
P2~u,f!

r0r 3 ~r 0!r ! l !. ~4!

The parametera is a measure of the flow event anisotrop
the casea50 corresponding to isotropic flow events.

In a homogeneous system described by linear elasti
theory, the density change following an elastic displacem
is equal to2r0“•u @32#. Thus, if a viscous liquid were
homogeneous, the density change in the surroundings
flow event would be given by Eq.~4! ~looking like an elec-
tronic d-orbital!. However, the density of a viscous liquid
not quite spatially constant, and the density change indu
by a flow event has an extra term,2u•“r, coming from the
fact that the whole density profile is displaced. Far aw
from the flow event this extra term dominates over the“
•u) term.

The flow event induced changes given by Eqs.~1! and~4!
were calculated from the fact that there is a linear relat
between displacement and stress tensor change. These r
are valid independent of the chemical nature of the liqu
One possible objection to these results is that dynamic in
mogeneities most likely give rise to spatially varying elas
constants. However, being mainly interested in the high v
cosity limit where the solidity length is large, these inhom
geneities are not expected to have any significant effec
the average displacements in the surroundings of a fl
event ~the ‘‘long wavelength’’ limit!. Finally, we note that
the sharp distinction between ‘‘real’’ motion and vibration
somewhat blurred by the fact that real motion takes place
only in the region itself in the form of large jumps, but als
in the surroundings in the form of small jumps.

To summarize, arguing from the ‘‘solidity’’ of viscous
liquids, the flow induced displacement in the surroundin
have been calculated for the general, anisotropic case. It
been shown that ther dependence of these displacements
the same that induced by isotropic flow events. A dimensi
less numbera has been introduced as a measure of the
gree of anisotropy of a flow event.
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