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Solidity of viscous liquids. Il. Anisotropic flow events
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Recent findings on displacements in the surroundings of isotropic flow events in viscous [[Rjoyds Rev.
E 59, 2458(1999] are generalized to the anisotropic case. Also, it is shown that a flow event is characterized
by a dimensionless number reflecting the degree of anisotf&1y263-651%99)00406-1

PACS numbgs): 64.70.Pf, 62.10ts, 62.90+k

In a previous paper, henceforth referred to(Bs[1], it molecules are only slightly displaced; the large-displacement
was argued that viscous liquids close to the glass transitiomolecules involved in a flow event thus define a “region” of
[2—-11—where viscosity is roughly 0 times larger than the liquid. Because flow events are rare and molecules most
that of, e.g., room temperature water—are more like solid®f the time just vibrate, a viscous liquid looks much like a
than like the less viscous liquids studied in standard liquigsolid. In (1) the small displacements in the surroundings of a
theory[12,13. The idea[5] that viscous liquids are qualita- flow_event were calculated from solid elasticity theory, as-
tively different from less-viscous liquids is, of course, not SUming spherical symmetry. It was shown that the displace-
new. It is a rather obvious idea, given the following fact. Mentu in the surroundings of a region is given byherer
While “ordinary” less-viscous liquids have relaxation times 'S the distance to the regipn
in the picosecond range, i.e., comparable to typical phonon 1
times, viscous liquids have much longer average relaxation uot —. (1)
times (roughly given by Maxwell's expressior= 7/G.,, '

where 7 is t_he viscosi_ty andG., thg ins_tantaneous shear The displacement is purely radial. However, assuming
modulug. This decoupling of relaxation times from phonon gherical symmetry of flow events is not realistic; when mol-

times is also reflected in a decoupling of diffusion constantg.cyjes move from one potential energy minimum to another
[14]: For less-viscous liquids the molecular diffusion con-ihere must be some violation of spherical symmetry, even if
stantD is of the same order of magnitude as the transversgye molecules have only radially dependent interactions. One

momentum diffusion constant, the dynamic viscosity of thejs thys led to ask whether E¢L) and its consequences re-
Navier-Stokes equation~7. However, with increasing Vis-  maijn valid in the anisotropic case.

H -1 H . . . . .. . . .
cosity, D decreasegroughly as» ™~ from a simple Stokes- As in (1) the starting point is the solidity of viscous liquids
Einstein type arguTghWhne vincreases. At the glass tran- s reflected in the slow “real” motion of the molecules. This
sition v is about 18° times larger tharD. fact implies that the average force on any molecule is ex-

The average relaxation time increases dramatically upofemely close to zero. In a continuum description, the aver-
cooling. Goldstein arguefil5] that whenr becomes longer age force per unit volume is the divergence of the stress
than about 1 ns there is a gradual onset of typical VisCOUSensoro; , wherei,j=1,2,3 are spatial indices. The condi-

liquid behavior. As noted first by AngefB], this is roughly  tion of average zero force—elastic equilibrium—¢ishere
at the temperature below which ideal mode-coupling theo%i=a/axi and one sums over repeated indices

[16] breaks down. It is generally believed that in viscous
liquids “real” molecular motion beyond pure vibration takes di0i;=0. 2
place on the time scale defined byalthough inhomogene-
ities are likely to give rise to faster relaxations in some parts Linear elasticity theory32] may be applied to the region
of the liquid[17-22. “Real” motion is rare because it in- surroundings, because the molecular displacements in these
volves overcoming energy barriers large comparedkg®d  surroundings are small and because there is elastic equilib-
[2,15]. The transition itself is a jump between two potential rium in the liquid before as well as after a flow event. Most
energy minima, a process that lasts just a few picosecondBkely, there are large “frozen-in” stresses in the liquid, but
One thus arrives at the following picture: Most molecularthe changein the stress tensor induced by one flow event is
motion in a viscous liquid is purely vibrational; real motion small, except in the region itself. Now we define a sphere
is rare and takes place via sudden molecular rearrangemententered at the region, large enough that outside the sphere
It is interesting to note that this old pictuf&,23] has never the flow event induced displacements and stress tensor
really been challenge@vhile the nature of the energy barrier changes are so small that linear elasticity theory applies for
to be overcome in the transition is still being debaied]).  the changes. Image all molecules within the sphere being
In fact, extensive computer simulations have now defini-removed, and the forces from these molecules acting on the
tively confirmed the picturg¢25]. molecules outside the sphere being replaced by external
The sudden molecular rearrangemdi$,15,26—31are  forces applied to the surface of the sphere. This is done be-
referred to below as “flow events.” It is generally believed fore as well as after the flow event. The flow event induced
that flow events are localized in the sense that only a fewdisplacements of the surroundings can then be calculated
molecules experience large displacements, while all othefrom the change of these external forces. To do this we first
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consider the distance dependence of displacements in &rhis expression applies far away from the flow event:
elastic solid when an external force is applied to just onea>r,, whererg is the region size. On the other hand, the
point. There is then a continuous flow of momentum into theexpression does not apply beyond the “solidity length”
solid at that point. The stress tensor is the momentum curdiscussed in(l), where essentially no flow event induced
rent, and the mechanical equilibrium conditifeq. (2)] is  displacements are expected. Sirleu is dimensionlessey
the zero-divergence equation reflecting momentum conservaas dimensior(length®. Writing a=alp,, wherep, is the
tion. By considering Gauss surfaces at various distancesverage(numbey} density anda is dimensionless, we have
from the point, one concludes from E(R) that the stress
tensor decays as 2, wherer is the distance to the point. V,u:am (ro<r<l) (4)

i ) . . 3 0 :
Since the stress tensor is formed from first order spatial de- por
rivatives of the displacement, we conclude thauocr —1 ) i
[33]. This result also applies when several external forces aré'€ parametea is a measure of the flow event anisotropy,
applied locally to the solid, as long as these forces do nothe casea=0 corresponding to isotropic flow events.
sum to zero. In our case, however, the external forces replac- !N @ homogeneous system described by linear elasticity
ing the forces from the molecules within the sphere do sunjh€ory, the density change following an elastic displacement
to zero: The forces from the molecules outside the sphere o§ €dual to—poV-u [32]. Thus, if a viscous liquid were
those inside must sum to zero—otherwise the latter mollomogeneous, the density change in the surroundings of a
ecules would start to move. By Newton’s third law, the sumflow event would be given by Ed4) (looking like an elec-
of the forces acting from the molecules inside the sphere offonic d-orbital). However, the density of a viscous liquid is
those outside—the forces that are replaced by externdlot quite spatially constant, and the density 'change induced
forces—must therefore also sum to zero. When the externdly @ flow event has an extra term_,u'_Vp, coming from the
forces sum to zero, the stress tensor does not decayZs fact that the whole dgnsﬂy profile is dl_splaced. Far away
but asr 3 (the mathematics behind this fact is the same adrom the flow event this extra term dominates over tive (
that implying that the electric field from a charge distribution * 1) term. _ _
with zero total charge decays as® and not ag ~2). Con- The flow event induced changes given by Eds.and(4)

sequently, since the stress tensor is given as first order d¥.€re caICL_JIated from the fact that there is a linear relation
rivatives of the displacement vector, we arrive at EB, between displacement and stress tensor change. These results
which is now to be understood as valid for each of the threde valid independent of the chemical nature of the liquid.
components of the displacement vector. In particular, weé2n€ possible objection to these results is that dynamic inho-
note that the predictions df) for the displacement and ro- Mogeneities most likely give rise to spatially varying elastic
tation angle distributions in the surroundings of a flow eventconstants. However, being mainly interested in the high vis-
[P(u)cu~52 and P(¢)e ¢ 2] are also valid in the aniso- cosny .I|m|t where the solidity length is Iarg'e, 'ghese inhomo-
tropic case. The first prediction has recently been confirmed€neities are not expected to have any significant effect on
in computer simulations of a binary Lennard-Jones mixturgn€ average displacements in the surroundings of a flow

[34], and the second is consistent with the small rotatiorfVent(the “long wavelength” ‘I‘imit).”Fina.IIy, we note that
angle distribution tentatively inferred from NMR experi- the sharp distinction between “real” motion and vibration is

ments on glycerol by Bamer and HinzeP(¢)x 1/sir¥(¢) somewhat blurred by the fact that real motion takes place not

[35]. only in the region itself in the form of large jumps, but also
We now show that it is possible to characterize flow™ the surroundings in the form of small jumps.

events according to their anisotropy. The elastic equilibrium_ TO Summarize, arguing from the “solidity” of viscous

in the surroundings of a flow event before as well as after thdlauids, the flow induced displacement in the surroundings
flow event implies that the stress tensor charge; has have been calculated for the general, anisotropic case. It has

zero divergencéi.e., obeys Eq(2)]. Sinceu and Ay; are been shown that thedepgndencg of these displacgmentg is
linked by linear elasticity theory, one hia2] the same that induced by isotropic flow events. A dimension-

X less numberl has been introduced as a measure of the de-
V4(V.u)=0. (3)  gree of anisotropy of a flow event.

This equation can be solved asymptotically fer «: Equa- The author wishes to thank Austen Angell and Ralph
tion (1) implies V-uecr ~2. Any real solution to the Laplace Chamberlin for numerous stimulating discussions, and also
equation decaying asr~3 can be written [36] as for their most kind hospitality during the author's stay at
aP,(6,¢)Ir3, wherea=0 is a constant an®, is a normal-  Arizona State University, where parts of this work were car-
ized linear combination of second order spherical harmonicsied out. This work was supported by the Danish National
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